1. Complex and holomorphic vector bundles

Definition 1. Let M be a differentiable manifold. A C^∞ complex vector bundle consists of a family $\{E_x\}_{x \in M}$ of complex vector spaces parametrized by M, together with a C^∞ manifold structure of $E = \bigcup_{x \in M} E_x$ such that

1. The projection map $\pi: E \to M$ taking E_x to x is C^∞, and
2. For every $x_0 \in M$, there exists an open set U in M containing x_0 and a diffeomorphism $\phi_U: \pi^{-1}(U) \to U \times \mathbb{C}^k$ taking a vector space E_x isomorphically onto $\{x\} \times \mathbb{C}^k$ for each $x \in U$; ϕ_U is called a trivialization of E over U.

The dimension of the fibers E_x of E is called the rank of E; in particular, a vector bundle of rank 1 is called a line bundle. Note that for any pair of trivializations ϕ_U and ϕ_V the map $g_{UV}: U \cap V \to GL_k$ given by

$$g_{UV}(x) = (\phi_U \circ \phi_V^{-1})|_{\{x\} \times \mathbb{C}^k}$$

is C^∞; the maps G_{UV} are called transition functions for E relative to the trivializations ϕ_U, ϕ_V. The transition functions of E necessarily satisfy the identities

$$g_{UV}(x) \cdot g_{VW}(x) \cdot g_{WU}(x) = I$$

for all $x \in U \cap V \cap W$.

Conversely given an open cover $\mathcal{U} = \{U_\alpha\}$ of M and C^∞ maps $g_{\alpha\beta}: U_\alpha \cap U_\beta \to GL_k$ satisfying the these identities, there is a unique complex vector bundle $E \to M$ with transition functions $\{g_{\alpha\beta}\}$: it is not hard to check that E as a point set must be the union

$$\bigcup_{\alpha} U_\alpha \times \mathbb{C}^k$$

with points $(x, \lambda) \in U_\beta \times \mathbb{C}^k$ and $(x, g_{\alpha\beta}(x) \cdot \lambda) \in U_\alpha \times \mathbb{C}^k$ identified and with the manifold structure induced by the inclusions $U_\alpha \times \mathbb{C}^k \hookrightarrow E$.

As a general rule, operations on vector spaces induce operations on vector bundles. For example, if $E \to M$ is a complex vector bundle, we take the dual bundle $E^* \to M$ to be the complex vector bundle with fiber $E^*_x = (E_x)^*$; trivializations

$$\phi_U^*: E^*_U \to U \times \mathbb{C}^k$$

where $E_U = \pi^{-1}(U)$ then induce maps

$$\phi_U^*: E^*_U \to U \times \mathbb{C}^{k^*} \cong U \times \mathbb{C}^k,$$
which give $E^* = \cap E_x^*$ the structure of a manifold. The construction is most easily expressed in terms of transition functions: if $E \to M$ has transition functions $\{g_{\alpha\beta}\}$, then $E^* \to M$ is just the complex vector bundle given by transition functions $j_{\alpha\beta}(x) = t^{g_{\alpha\beta}}(x)^{-1}$.

Similarly, if $E \to M$, $F \to M$ are complex vector bundles of rank k and l with transition functions $\{g_{\alpha\beta}\}$ and $\{h_{\alpha\beta}\}$, respectively, then one can define bundles

1. $E \oplus F$, given by transition functions

 $j_{\alpha\beta}(x) = \begin{pmatrix} g_{\alpha\beta}(x) & 0 \\ 0 & h_{\alpha\beta}(x) \end{pmatrix} \in GL(\mathbb{C}^k \oplus \mathbb{C}^l)$,

2. $E \otimes F$, given by transition functions

 $j_{\alpha\beta}(x) = g_{\alpha\beta}(x) \otimes h_{\alpha\beta}(x) \in GL(\mathbb{C}^k \otimes \mathbb{C}^l)$,

3. $\wedge^r E$, given by transition functions

 $j_{\alpha\beta}(x) = \wedge^r g_{\alpha\beta}(x) \in GL(\wedge^r \mathbb{C}^k)$,

In particular, $\wedge^k E$ is a line bundle L given by

$\det g_{\alpha\beta}(x) \in GL(L, \mathbb{C}) = \mathbb{C}^*$,

called the determinant bundle of E.

OTHER WORDS: subbundle, quotient bundle

Definition 2. Given a C^∞ map $f: M \to N$ of differentiable manifolds M and N and a complex vector bundle $E \to N$, we can define the pullback bundle $f^* E$ by setting

$(f^* E)_x = E_{f(x)}$.

If

$\phi: E_U \to U \times \mathbb{C}^n$

is a trivialization of E in a neighborhood of $f(x)$, then the map

$f^* \phi: f^* E_{f^{-1}U} \to f^* U \times \mathbb{C}^n$

gives $f^* E$ its manifold structure over the open set $f^{-1}U$. Transition functions for the pullback $f^* E$ will, of course, be the pullback of the transition functions for E.

A map between vector bundles E and F on M is given by a C^∞ map $f: E \to F$ such that $f(E_x) \subset F_x$ and $f_x = f|_{E_x}: E_x \to F_x$ is linear. Note that

$Ker(f) = \cup Ker(f_x) \subset E$

and

$Im(f) = \cup Im(f_x) \subset F$

are subbundles of E and F, respectively if and only if the maps f_x all have the same rank. Two bundles E and F on M are isomorphic if there exists a map $f: E \to F$ with $f_x: E_x \to F_x$ an isomorphism for all $x \in M$; a vector bundle on M is called trivial if it is isomorphic to the product bundle $M \times \mathbb{C}^k$.

REVIEW WORDS: section, frames
Definition 3. A **holomorphic vector bundle** $E \to M$ is a complex vector bundle together with the structure of a complex manifold on E, such that for any $x \in M$ there exists $U \ni x$ in M and trivialization

$$\phi_U : E_U \to U \times \mathbb{C}^k$$

that is a biholomorphic map of complex manifolds. Such a trivialization is called a **holomorphic trivialization**.

Remark 1. One important difference between C^∞ and holomorphic vector bundles is: while there is no naturally defined exterior derivative d on the space of sections of vector bundle, on a holomorphic vector bundle E the ∂-operator $$\partial: A^{p,q}(E) \to A^{p,q+1}(E)$$ from E-valued (p,q)-forms to E-valued $(p,q+1)$-forms is well-defined: we take $\{e_1, \ldots, e_k\}$ any local holomorphic frame for E over U, write $\sigma \in A^{p,q}(E)$ as

$$\sigma = \sum \omega_i \otimes e_i, \quad \omega \in A^{p,q}(U),$$

and set

$$\partial \sigma = \sum \partial \omega_i \otimes e_i.$$

Example 1.

1. $T^*(M) = T(M)^*$: the complex cotangent bundle,
2. $T^s(M), T^s(M)$: the holomorphic and antiholomorphic cotangent bundles,
3. $T^{s(p,q)}(M) = \bigwedge^p T^s(M) \otimes \bigwedge^q T^{s'}(M)$.

The tensor, symmetric, and exterior products of the holomorphic and complexified tangent and cotangent bundles are called **tensor bundles**.

If $V \subset M$ is a complex submanifold, we define the **normal bundle** $N_{V/M}$ to V in M to be the quotient of the tangent bundle to M, restricted to V by the subbundle

$$T'(V) \hookrightarrow T'(M)|_V.$$

The **conormal** bundle $N^*_{V/M}$ to V in M is the dual of the normal bundle.

2. **Connections**

A smooth function with values in \mathbb{R}^k on a manifold M can be viewed as a section of the trivial vector bundle $M \times \mathbb{R}^k$. The theory of connections is an attempt to generalize the notion of directional derivative of (real or vector-valued) functions to sections in vector bundles.

Let $\pi: E \to M$ be a vector bundle. We are interested in operators which assign to each smooth vector field X on M and smooth section σ on E another smooth section of E called the **covariant derivative** of σ with respect to X. Of course, we would like these operators to be \mathbb{R}-linear, tensorial in the first variable and to satisfy the Leibniz rule. Summarizing, we have:

Definition 4. A **connection** D on a complex vector bundle $E \to M$ is a map

$$D: A^0(E) \to A^1(E)$$

satisfying Leibnitz’ rule

$$D(f \cdot \xi) = df \otimes \xi + f \cdot D(\xi)$$

for all sections $\xi \in A^0(E)(U)$, $f \in C^\infty(U)$.
A connection is essentially a way of differentiating sections: for \(\xi \in A^0(E)(U) \) the contraction of \(D\xi \) with a tangent vector \(v \in T_x(M) \) may be thought of as the derivative of \(\xi \) in the direction \(v \). It is, however, only a first-order approximation of differentiation, inasmuch as mixed partials will in general not be equal.

Let \(e = e_1, \ldots, e_n \) be a frame for \(E \) over \(U \). Given a connection \(D \) on \(E \), we can decompose \(De_i \) into its components, writing

\[
De_i = \sum \theta_{ij} e_j.
\]

The matrix \(\theta = (\theta_{ij}) \) of 1-forms is called the *connection matrix* of \(D \) with respect to \(e \). The data \(e \) and \(\theta \) determine \(D \): for a general section \(\sigma \in A^0(E)(U) \), writing

\[
\sigma = \sum \sigma_i e_i,
\]

we have

\[
D\sigma = \sum d\sigma_i \cdot e_i + \sum \sigma_i \cdot De_i
= \sum_j (d\sigma_i + \sum_i \sigma_i \theta_{ij}) e_i.
\]

The connection matrix \(\theta \) at a point \(z_0 \in U \) depends on the choice of frame in a neighborhood of \(z_0 \): if \(e' = e'_1, \ldots, e'_n \) is another frame with

\[
e'_i(z) = \sum g_{ij}(z)e_j(z),
\]

then

\[
De'_i(z) = \sum dg_{ij} \cdot e_j + \sum g'_{ik}\theta_{kj} \cdot e_j,
\]

so that

\[
\theta'_{ij} = dg \cdot g^{-1} + g \cdot \theta_e \cdot g^{-1}.
\]

There is in general no "natural" connection on a vector bundle \(E \). If \(M \) is complex and \(E \) hermitian, however, we can make two requirements that dictate a canonical choice of connection.

1. Using the decomposition \(T^* = T^*' \oplus T^*'' \), we can write \(D = D' + D'' \), with \(D' : A^0(E) \to A^{1,0}(E) \) and \(D'' : A^0(E) \to A^{0,1}(E) \). Now we say that a connection \(D \) on \(E \) is compatible with the complex structure if \(D'' = \nabla \).

2. If \(E \) is hermitian, \(D \) is said to be compatible with the metric if

\[
d(\xi, \eta) = (D\xi, \eta) + (\xi, D\eta).
\]

Lemma 1. *If \(E \) is a hermitian vector bundle, there is a unique connection \(D \) on \(E \) compatible with both the metric and the complex structure.*

Proof. Let \(e = e_1, \ldots, e_n \) be a holomorphic frame \(E \), and let \(h_{ij} = (e_i, e_j) \). If such a \(D \) exists, its matrix \(\theta \) with respect to \(e \) must have type \((1, 0)\), and consequently

\[
dh_{ij} = d(e_i, e_j)
= \sum_k \theta_{ik}h_{kj} + \sum_k \overline{\theta}_{jk}h_{ik}
= \text{type (1,0)} + \text{type (0,1)}.
\]
Comparing types, we have
\[\partial h_{ij} = \sum_k \theta_{ik} h_{kj}, \quad i.e., \quad \partial h = \theta h, \]
\[\bar{\partial} h_{ij} = \sum_k \bar{\theta}_{jk} h_{ik}, \quad \bar{\partial} h = \bar{h} \bar{\theta}, \]
and we see that \(\theta = \partial h \cdot h^{-1} \) is the unique solution to both equations. Since \(\theta \) is determined by the conditions of compatibility, \(\theta \) is well-defined globally. \(\square \)

Definition 5. The unique connection compatible with the complex and metric structures on \(E \) is called the associated, or metric, connection. as mentioned in the proof, its matrix with respect to a holomorphic frame is of type \((1,0)\); on the other hand if \(e_1, \ldots, e_n \) is unitary frame,
\[0 = d(e_i, e_j) = \theta_{ij} + \bar{\theta}_{ji}, \]
so its matrix with respect to a unitary frame is skew-hermitian.

The metric connections of hermitian vector bundles behave well with respect to bundle operations, as we see in the next two lemmas.

Lemma 2. Let \(E \to M \) be a hermitian vector bundle and \(F \subset E \) a holomorphic subbundle. Then \(F \) is itself a hermitian bundle with metric connection \(D_F \). On the other hand, the metric connection \(D_E \) in \(E \) and direct-sum decomposition \(E = F \oplus F^\perp \) induced by the metric give a connection \(\pi_F D_E \) in \(F \), and \(D_F = \pi_F \circ D_E \), where \(\pi_F \) is the projection onto \(F \).

Proof. If \(\xi \) is a section of \(F \), then \((\pi_F \circ D_E')(\xi) = \pi_F(D''_E \xi) = \pi_F (\bar{\partial} \xi) = \bar{\partial} \xi, \) so that \(\pi_F \circ D_E \) is compatible with the complex structure. If \(\xi, \xi' \) are sections of \(F \), then
\[d(\xi, \xi') = (D_E \xi, \xi') + (\xi, D_E \xi') \]
\[= (\pi_F \circ D_E \xi, \xi') + (\xi, \pi_F \circ D_E \xi') \]
so that \(\pi_F \circ D_E \) is compatible with the metric. \(\square \)

Similarly, if \(E, E' \) are hermitian vector bundles, there is a natural metric on \(E \otimes E' \) given by
\[(\lambda \otimes \lambda', \delta \otimes \delta') = (\lambda, \delta) \cdot (\lambda', \delta') \]
for \(\lambda, \delta \in E_x, \lambda', \delta' \in E'_x \). Let \(D_E, D_{E'}, D_{E \otimes E'} \) denote the metric connections on \(E, E', \) and \(E \otimes E', \) respectively, and let \(D_{E \otimes 1} \) be the connection on \(E \otimes E' \) given by
\[(D_E \otimes 1)(\xi \otimes \zeta) = D\xi \otimes \zeta; \]
define \(1 \otimes D_{E'} \) analogously. Then we have

Lemma 3.
\[D_{E \otimes E'} = D_E \otimes 1 + 1 \otimes D_{E'}. \]

Finally, note that a hermitian metric on the holomorphic bundle \(E \) induces a metric on \(E^* \) - if \(e \) is a unitary frame for \(E, e^* \) the dual frame for \(E^* \), set
\[(e_i^*, e_j^*) = \delta_{ij} \]
- and the metric connection \(D^* \) on \(E^* \) can be defined by the requirement
\[d\langle \sigma, \tau \rangle = \langle D\sigma, \tau \rangle + \langle \sigma, D^*\tau \rangle \]
for $\sigma \in A^0(E)(U) \tau \in A^0(E^*)(U)$.

Now, returning to the general discussion, given a connection D on a complex vector bundle $E \to M$ we can define operators $D : A^p(E) \to A^{p+1}(E)$ by forcing Leibnitz' rule

$$D(\psi \wedge \xi) = d\psi \otimes \xi + (-1)^p \psi \wedge D\xi$$

for $\psi \in A^p(U), \xi \in A^0(E)(U)$. In particular we can discuss the operator

$$D^2 : A^0(E) \to A^2(E).$$

The first fact about D^2 is that it is linear over A^0, i.e. for σ a section of E and f a C^∞ function,

$$D^2(f \cdot \sigma) = D(df \otimes \sigma + f \cdot D\sigma)$$

$$= -df \wedge D\sigma + df \wedge D\sigma + f \cdot D^2\sigma$$

$$= f \cdot D^2\sigma.$$

Consequently the map $D^2 : A^0(E) \to A^2(E)$ is induced by a bundle map

$$E \to \bigwedge^2 T^* \otimes \text{Hom}(E, E) = \bigwedge^2 T^* \otimes (E^* \otimes E).$$

If e' is a frame for E, then in terms of the frame $\{E^*_i \otimes e_j\}$ for $E^* \otimes E$, we can represent $\Theta \in A^2(E^* \otimes E)$ by a matrix Θ_e of 2-forms – i.e., we can write

$$D^2 e_i = \sum \Theta_{ij} \otimes e_j;$$

Θ_e is called the curvature matrix of D in terms of the frame e. If $\{e'_i = \sum g_{ij} e_j\}$ is another frame

$$D^2 e'_i = D^2\left(\sum g_{ij} e_j\right)$$

$$= \sum g_{ij} \Theta_{jk} e_k$$

$$= \sum g_{ij} \Theta_{jk} g^{-1}_{kl} e'_l,$$

that is,

$$\Theta_{e'} = g \cdot \Theta_e \cdot g^{-1}.$$

The curvature matrix is readily expressed in terms of the connection matrix: by definition

$$D^2 e_i = D\left(\sum \theta_{ij} \otimes e_j\right)$$

$$= \sum (d\theta_{ij} - \sum \theta_{ik} \wedge \theta_{kj}) \otimes e_j.$$

In matrix notation, therefore,

$$\Theta_e = d\theta_e - \theta_e \wedge \theta_e.$$

This is called the Cartan structure equation.

We can say more about Θ in the holomorphic case. If $E \to M$ is hermitian and the connection D on E is compatible with the complex structure, then $D'' = \bar{\partial}$ implies $D'' = 0$ and hence $\Theta^{0,2} = 0$. If, moreover, D is compatible with the metric, then in terms of a unitary frame e, the connection matrix θ_e is skew-hermitian and hence so is $\Theta = d\theta - \theta \wedge \theta$; thus $\Theta^{2,0} = -i\Theta^{0,2} = 0$. Since the type of Θ is clearly invariant under change of frame, we
see that the curvature matrix of the metric connection on a hermitian bundle is a hermitian matrix of \((1,1)\)-forms.

To close this section, we give computations of the metric connection and curvature matrices of hermitian bundles in two special cases.

First, recall that for \(E\) a hermitian bundle with metric connection \(D\), the metric connection \(D^*\) on \(E^*\) satisfies

\[d\langle \sigma, \tau \rangle = \langle D\sigma, \tau \rangle + \langle \sigma, D^*\tau \rangle \]

for all \(\sigma \in A^0(E)(U)\) \(\tau \in A^0(E^*)(U)\). In particular, if \(e\) is a frame for \(E\) and \(e^*\) the dual frame for \(E^*\), \(\theta\) and \(\theta^*\) the corresponding connection matrices, we have

\[0 = d\langle e_i, e_j^* \rangle = \theta_{ij} + \theta^*_{ji}, \]

so that \(\theta = -t^\theta\).

In view of this, a special situation holds when we consider the metric connection on the holomorphic tangent bundle of a hermitian manifold: we can compare the dual connection \(D^*\) on the holomorphic cotangent bundle with the ordinary exterior derivative. Thus

\[D^* : A^{1,0} \to A^{1,0} \otimes A^1 = (A^{1,0} \otimes A^{1,0}) \otimes (A^{1,0} \otimes A0, 1) \]

\[d : A^{1,0} \to A^{2,0} \oplus (A^{1,0} \otimes A^{0,1}). \]

Since \(D^*\) is compatible with the complex structure, we have \(D^{*''} = \overline{\partial}\), i.e. the two operators agree in the factor \(A^{1,0} \otimes A^{0,1}\). As will now be seen, this gives us an effective means of computing the connection matrix of \(D\). Let \(ds^2 = \sum h_{ij}dz_i \otimes d\overline{z}_j = \sum \phi_i \otimes \overline{\phi_i}\) be a hermitian metric on \(M\).

Lemma 4. There exists a unique matrix \(\psi_{ij}\) of 1-forms such that \(\phi + t^\psi = 0\) and

\[d\phi_i = \sum_j \psi_{ij} \wedge \phi_j + \tau_i \]

where \(\tau_i\) is type \((2,0)\).

Proof. Write \(\psi = \psi' + \psi''\) for the type decomposition of \(\psi\). Then

\[\overline{\partial}\phi_i = \sum \psi''_{ij} \wedge \phi_j \]

determines \(\psi''\), and \(\psi + t^\psi = 0\) implies \(\psi' = -t^\psi''\). (Explicitly: if we write \(\phi_i = \sum a_{ij}dz_j\), where \(\overline{a^\alpha} = h\), we have

\[\overline{\partial}\phi_i = \sum_k a_{ik} \wedge dz_k \]

\[= \sum_{j,k} \overline{\partial}a_{ik} \wedge a_k^{-1} \cdot \phi_j, \]

so \(\psi'' = \overline{\partial}a a^{-1} \cdot \). \(\square\)

Let \(v = v_1, \ldots, v_n\) be the frame for the tangent bundle \(T'(M)\) dual to the frame \(\phi_1, \ldots, \phi_n\); let \(\theta\) be the connection matrix of \(D\) with respect to the frame \(v\) and \(\theta^*\) the matrix for \(D^*\) in the frame \(\phi_1, \ldots, \phi_n\). Then

\[D^{*''} = \overline{\partial} \Rightarrow \theta^{*''} = \psi'' \]

\[\Rightarrow \theta^* = \psi \]
since $\theta^* + ^t\theta^* = 0$ and $\psi + ^t\psi = 0$. Thus we have
\[\theta = -^t\theta^* = -^t\psi. \]

In summary, using the basic structure equation we may determine the connection matrix $\theta = -^t\psi$ in the holomorphic tangent bundle $T'(M)$ by knowing the exterior derivatives $d\phi_i$ of unitary coframe. The vector $\tau = (\tau_1, \ldots, \tau_n)$ is called the torsion; a metric is called Kähler if its torsion vanishes. Later on we shall give alternate definitions of the Kähler condition.

References